1. Summary

Philips Australia Amplifier Type 961, S.N. 3486. $\$ 25$ eBay March 2009

1.1 Original Amplifier

Two microphone and one P.U. input channel PA amplifier. 9-pin pentode for each microphone channel, and for summing amplifier. 6SN7 gain stage with feedback mixer, and split-load cathodyne splitter and fixed bias push-pull pentode output, with secondary side feedback. 800 V plate supply from voltage doubler 5U4GB (2x) diode rectifier and capacitor input filter. Half plate supply is fed via inductor to the screen supply, with cascading resistor/cap dropping to the driver and input stage supplies. Plate voltage droops to 640 V with 85 W output loading, and 8 W driver loading. Output stage grid bias from separate half-wave diode supply. Bass \& Treble tone pots between summing and splitter stages. 5 x 8 -pin Octal and 4×9-pin Novel bases total.

Power and output transformers with markings but no manufacturer. Choke from Plessey. All transformers and choke show good Megger readings. However the amplifier was not powered up in original circuit due to condition of all caps.

POTs are IRC but only BD2 or RC2 markings. Ducon caps. The 20 uF is DUCONOL A. No valves.

Output Transformer Power Transformer Choke
POTs
CAPs

140/70/50/35 ohm outputs. Marked 880 and 2472.
Marked 2402 and 1323
Plessey. Marked KCH16 and 14/60 and 10820 [possibly added later]
IRC marked BD2 and RC2.
DUCONOL A 20 mF 600 V - caution may contain PCBs
Ducon 24uF 600 V
Ducon 16uF 600V (x4)

1.2 Target Amplifier

Modify to typical guitar input stage with half 12AX7 followed by Fender tone stack and gain pot into other half 12AX7. Modify 6SN7 to Schmidt long tail pair. Retain output stage. Add extra input going through dual triode for high-gain distortion - can use 12A?7. WIP.

2. Modifications

- Replaced all resistors and capacitors.
- Guitar level input. Fender style treble/mid/bass tonestack with pots, feeding gain pot.

Volume pot feeding splitter stage. Presence pot to adjust feedback into tail of splitter stage.

- Replaced the power cable.
- Added 60 mm computer fan into the chassis base - add vent cutout - add vent holes around output valves. Add rubber feet to allow air flow underneath.
- Added low value cathode-to-0V resistors, with sense wires taken to 5-pin DIN for reading bias current level on each output tube.
- Split the grid bias VS5 to allow output tube bias currents to be matched.
- All wiring with zoned star ground configuration. Twisted pair and separate heater cabling. Shielded cable between sections.
- HT supplies with double the capacitance - but still substantial sag on heavy transient loading - XXX info on caps.
- Output Tranny configured for 35 ohm output using all turns on secondary windings (4 windings in parallel). This allows loading with 16 speaker if needed - and moves compression into knee region. Speakon output socket.
- Added Standby switch to secondary winding.
- HT supply fuse for over-current protection.
- MOV-R across each primary for open-circuit output protection.
- Added grid bias failure protection circuit (48 V relay that pulls out if bias is lost, and isolates the HT winding).
- Hi-gain input and 12A?7 circuit with cold then warm biasing with 9 mm trimpot for stage gain.
- Lo/Hi input switch to each socket.
- Indicators for standby and on.
- Use fuse in series with 1 R cathode sense, and shunt with a 10 k (to bias valve to about 40 V , 5 mA , if fuse blows).
- Lower the coupling caps in the XTRA gain sections from 10NF to 2N2F
- Mu-metal guard screen on PT and OT - placed on inner 'valve' side of PT, and both sides of OT, to reduce any field interaction with valves.
- Fan power supply - tbd.
- Connect feedback winding and check.
- Tuned humdinger to replace $25 / 25$ balance humdinger.
- Dual gain pot - two shafts - one for pre-gain, and one for overdrive gain. Or use a dualgang $500 \mathrm{k}-1 \mathrm{M} \log$, with the first gang pot used to feed both normal and overdrive, and second pot used for output of overdrive, and a switch to connect overdrive (front panel or foot). Use both stages of another 12AX7 or 12AU7 or 12AT7.

3. Measurements

Voltage rail regulation. 240VAC tap

Rail	Minimal load*	Max Load 120R series	Max Load. 0R series
VS1	$800 \mathrm{~V}(2.4 \mathrm{x})$	$560 \mathrm{~V}, 116 \mathrm{~mA}, 65 \mathrm{~W}$	$637 \mathrm{~V}, 133 \mathrm{~mA}, 85 \mathrm{~W}$
VS2	430 V	263	
VS3	428 V	$252,24 \mathrm{~mA}, 6 \mathrm{~W}$	$289 \mathrm{~V}, 27 \mathrm{~mA}, 8 \mathrm{~W}$
VS4			
VS5			
VS6			
Heater 1	5.4		
Heater 2	5.4		
Heater 3	6.6		
Heater 4	6.6		57.5 Vrms
Sec HT	335	$328 \mathrm{~V}, 300 \mathrm{~mA}, 98 \mathrm{~W}$	
Drop on 120R	335	$37 \mathrm{~V}, 300 \mathrm{~mA}, 11 \mathrm{~W}$	-
Ripple C1		49 Vrms	66.6 Vrms
Ripple C2		57 Vrms	2.5 Vrms
Ripple C3		2.2 Vrms	46.8 Vrms
Ripple C1+C2		38 Vrms	

12 uF poly for each cap C1, C2, C3. Choke between C2 and C3. VS1 across C1+C2.
Minimal load *: 5U4GB x2; 2x 6CA7 heaters; 200k on VS1; 62 K on VS3; 120R in series with sec. Max load: 5U4GB x2; 2x 6CA7 heaters; 4K8 on VS1; 10K5 on VS3; 120R in series with sec for one test.
Power transformer primary DC resistance: $3 \mathrm{~m} \Omega$.
Power transformer secondary DC resistance: 15Ω.
12 VAC 50 Hz nominal applied to output transformer

Winding	Voltage rms	Turns ratio; Pri Impedance; Spec level; Relative Turns	
Pri P-P: BLU to BRN	229	; Ω; N/A	
Sec: BLK to GRY	25.2	9.1; 11,600 Ω;	$140 \Omega ; 145 ; 100$
Sec: BLK to BRN	17.7	12.9; 11,650	70Л; 72; 70
Sec: BLK to YEL	15.2	15.1; 11,400 Ω;	50ת; 52; 60
Sec: BLK to BLU	12.4	18.5; 12,000 Ω;	35ת; 35; 50
Sec: RED to WH	8.6	26.6;	17Ω; N/A Ω; feedback winding

Output transformer primary DC resistance: $61+61 \Omega$ plate-to-plate.
Output transformer secondary DC resistance:
3Ω BLK-GRY
$1.7 / / 1.9 \Omega$ BLK-BLU
$1.2 / / 1.3 \Omega$ BLU-GRY
1.1Ω RED-WH
Secondary 35 R tap was split and interleaved windings reconnected to 0 R and 140R terminals to give all (4) interleaved windings acting as 35 R (ie. no phantom windings left over). Given power rating of amp, this would be a suitable output for 2×16 ohm speakers in series.

Choke inductance: tbd

4. Design Info

4.1 Input stage option 1 - 12AX7

Four 9-pin bases are available for input stage.
Supply voltage is 290 V ; load resistance is 100 k ; and cathode resistor is 1 K 5 . The plate voltage Vp axis intercept is 290 V for no plate current, and the plate current Ip axis intercept is $290 \mathrm{~V} / 101 \mathrm{~K} \Omega=$ 2.9 mA (point B). The gate-cathode voltage (Ec on the graph) operating point is at $\mathrm{Vgc}=1.5 \mathrm{Kx} 1 \mathrm{~mA}$ $=1.5 \mathrm{~V}$, and varies with plate current through the $1 \mathrm{k} 5 \Omega$ gate-cathode resistance with the characteristic shown on the graph as a line passing through $\mathrm{Ip}=1 \mathrm{~mA}$ for $\mathrm{Vgk}=-1.5 \mathrm{~V}$, and through $\mathrm{Ip}=1.5 \mathrm{~mA}$ for $\mathrm{Vgk}=-2.25 \mathrm{~V}$. The intersection of the two lines is the nominal biased operating point.

The input voltage swing limit is from the bias point at $\mathrm{Vgk}=-1.5 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 3 Vpp or 1.1 Vrms . Referring to the loadline, the plate voltage would swing about 240 V , from about 120 V to 360 V , with a mid point of $175 \mathrm{~V}[265-190=75 \mathrm{~V} ; 190-90=100 \mathrm{~V}]$ which is fairly symmetric. This gives a nominal gain of $175 / 3=58$. Signal overload will hit compression before cut-off. Could increase cathode to 1 K 8 .

4.2 Splitter stage option 1 - 6SN7 in long-tail config

One 8-pin Octal base is available for the splitter stage, which splits into two signals, 180deg out of phase from one another, and presents a voltage amplified drive to the push-pull output stage. The Schmidt long-tail splitter configuration was in common use by Fender/Marshall, but using 12AX7 or 12AT7. Here the aim is to use the 6 SN 7 twin triode in the 8 -pin Octal base, as the 6 SN 7 was in widespread use, and came with the PA amp.

Valve	$12 \mathrm{AX} 7-$ ECC83-7025	$12 \mathrm{AT7}$ - ECC81	6 SN 7
Gain	100	70	20
Current	Up to 1.2 mA	10 mA	9 mA
mu	1600	5000	2600
Design			$350 \mathrm{~V} ; 5 \mathrm{~mA}$
Rk	470 R	470 R	1 K 5
Rtail	$6 \mathrm{~K} 8+4 \mathrm{~K} 7$ presence \& F/b	$22 \mathrm{~K}-33 \mathrm{~K}$	$6 \mathrm{~K} 8+4 \mathrm{~K} 7$ presence \& F/b
Rgate	1 M	330 K	
Rload	$82 / 100 \mathrm{~K}$	47 K	56 K
Vsupply	470 V	$400 \mathrm{~V}-420 \mathrm{~V}$	400 V
Applications	Fender 59 Bassman	Fender Bassman 50 Fender Bassman 135	Needs 16 Vpp input. 60 V p-p output.

4.2.1 400V 5.3mA loadline

The available supply voltage is about 400 V . Aiming for a $400 \mathrm{~V} / 5.3 \mathrm{~mA}=75 \mathrm{~K}$ loadline, then the midpoint gate bias is about -8 V - hence the gate-cathode resistance required is about $8 \mathrm{~V} / 2.67 \mathrm{~mA}=$ 3 K , giving Rgc $\sim 1 \mathrm{~K} 5$ as a good design start.

The plate current versus plate voltage load line for each triode is given by the equation:

$$
I p=\frac{V_{p}}{R_{L}+2\left(R_{K}\right)}
$$

where $\mathrm{R}_{\mathrm{k}}=1 \mathrm{~K} 5 \Omega+6.8 \mathrm{k} \Omega+2.5 \mathrm{k} \Omega=11 \mathrm{k} \Omega$. Hence a load resistance of about $75 \mathrm{~K}-22 \mathrm{~K}=50 \mathrm{~K}$ is needed. The plate voltage Vp axis intercept is 400 V (point A) for no plate current, and the plate current Ip axis intercept is $400 \mathrm{~V} / 75 \mathrm{~K} \Omega=5.3 \mathrm{~mA}$ (point B). The gate-cathode voltage (Ec on the graph) varies with plate current through the $1 \mathrm{~K} 5 \Omega$ gate-cathode resistance, but with a $3 \mathrm{k} \Omega$ characteristic, and this characteristic is shown on the graph as a line passing through $\operatorname{Ip}=4 \mathrm{~mA}$ for $\mathrm{Vgk}=-12 \mathrm{~V}$, and through $\mathrm{Ip}=2 \mathrm{~mA}$ for $\mathrm{Vgk}=-6 \mathrm{~V}$. The intersection of the two lines is the nominal biased operating point.

Voltage drop across tail 2.5 k and 6 k 8 is a max of $9.3 \mathrm{k} x 5.3 \mathrm{~mA}=50 \mathrm{~V}$. Hence plate-cathode voltage is about $400-133-8-50=200 \mathrm{~V}$. Plate load resistance dissipation about $133 \times 133 / 50 \mathrm{k}$ $=0.4 \mathrm{~W}$. Plate dissipation idle is about $200 \mathrm{~V} \times 2.67 \mathrm{~mA}=0.6 \mathrm{~W}$.

The nominal operating point levels of $\mathrm{Vgk}=-8 \mathrm{~V}$ and $\mathrm{Vp}=190 \mathrm{~V}$ are used to determine the parameter values of r_{p} and gm and μ from the 6SN7 average transfer characteristics graph (note that Eb is Vp). Note that using less than 80 K loadline will reduce the available output voltage swing.

The analysis by Kuehnel shows that the gain of each triode is slightly different, due to a small level of common-mode gain adding to the out-of-phase output but subtracting from the in-phase output, which is compensated by lowering the load resistor for the out-of-phase output to $51 \mathrm{~K} \Omega$ nominal. The input voltage swing limit is from the bias point at $\mathrm{Vgk}=-8 \mathrm{~V}$ to $\mathrm{Vgk}=0 \mathrm{~V}$, which is about 16 Vpp
or 5.7 Vrms . Referring to the loadline, the plate voltage would swing about 275 V , from about 55 V to 330 V , with a mid point of $190 \mathrm{~V}[190-55=135 \mathrm{~V} ; 330-190=140 \mathrm{~V}]$ which is quite symmetric. This gives a nominal gain of $275 / 16=17$.

The small signal voltage gain G is about 7.5 x . Hence, the signal voltage swing available to each control grid of the output stage is up to $8 \mathrm{Vpk} \mathrm{x} 7.5=60 \mathrm{Vpk}$, which exceeds the output stage's requirements of about 40 Vpk max.

Adjusting Rgc, say from 1 K to 2 K , will have a significant effect on distortion.
The rated output voltage at the feedback winding is nominally $\sqrt{ }(70 \mathrm{~W} \times 15 \Omega)=32 \mathrm{~V}$. The feedback voltage from the output is attenuated to 4.3% (1.4 Vrms) by the 2 K 5 and 56 K divider, with a single pole roll-off at $\mathrm{f}=28 \mathrm{~Hz}$ due to the 0.1 uF cap bypassing 2 K 5 .

Parameter	No signal	Heavy load	Notes
R_{L}	56 k	100 k	
Vsupply	400 V	460 V	$=\mathrm{V}_{\mathrm{RL} \text { oad }}+\mathrm{V}_{\mathrm{P}}+\mathrm{Vk}$
I_{P}	2.5 mA	1.25 mA	From bias position
V_{gk}	-8 V $(-7.5 \mathrm{~V})$	-2.5 V $(-2.5 \mathrm{~V})$	From bias position $=\mathrm{I}_{\mathrm{P}} \times 2 \times 1.5 \mathrm{~K} \Omega$
	55 V	29 V	$=11 \mathrm{~K} \Omega \times 2 \times \mathrm{I}_{\mathrm{P}}$
Vk	200 V	300 V	$=400 \mathrm{~V}-55 \mathrm{~V}-\left(56 \mathrm{~K} \Omega \times \mathrm{I}_{\mathrm{P}}\right)$
V_{P}	$20 \mathrm{k} \Omega$	$65 \mathrm{k} \Omega$	$=\Delta \mathrm{Vpk} / \Delta \mathrm{Ip}$
r_{p}	1 mS	1.5 mS	$=\Delta \mathrm{Ip} / \Delta \mathrm{Vgk}$
Gm	$20[20]$	$98[98]$	$\mathrm{Graph}[=\mathrm{gm} \mathrm{x} \mathrm{r}$
μ	\sim		
μ	~ 7.4	~ 30	$=(\mathrm{u} / 2) \times \mathrm{R}_{\mathrm{L}} /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{r}_{\mathrm{p}}\right)$
G	.1	.1	$=4 \mathrm{~K} 7 / 47 \mathrm{~K}$
B	16 Vpp	5.0 Vpp	
Headroom	1		

Table 1. Phase Splitter Analysis Results for 6SN7

4.3 Output Stage

In this Class AB push-pull output stage the cathodes are grounded, and each 6CA7/EL34 tube operates in a fixed bias mode with a negative gate voltage. The $12 \mathrm{~K} \Omega$ impedance plate-to-plate OPT presents signal currents into each tube with a $6 \mathrm{~K} \Omega$ impedance with both tubes conducting, to $3 \mathrm{~K} \Omega$ load impedance at higher levels.

Determining a suitable bias current level is not an empirical design approach, rather it is based on the following recommendations:

- Start with the lowest bias current possible (ie. most negative grid bias voltage), and based on listening tests, increase the bias current until the sound character is acceptable, but:
- use the lowest possible bias current level, as this generally increases the life of the tubes, and decreases the chance of operating at excessive plate dissipation; and
- keep the bias current level below 70% of the recommended design max plate dissipation (ie. $0.7 \times 25=<18 \mathrm{~W}$); and
- assess the dynamic loadline to see if it moves into region of increased plate dissipation.

As the output loading increases, the supply voltage VS1 to the output valve plates sags from about 800 V towards 640 V . Plate DC voltage will be lower than VS1 by an amount up to $\sim 13 \mathrm{~V}$; ie. OPT half resistance of about 60Ω with a peak current of up to about 0.22 A .

Screen voltage VS3 will vary from about 430V towards 290V under steady-state heavy load. VS2 depends on loading and capacitance ratio. VS3 will be lower than VS2 due to voltage drop across choke. Ripple on C 1 and C 2 is quite high, due to half-wave circuit, but this is not significant for push-pull stage performance. Ripple on VS3 is quite low due to the choke/capacitor filter. Peak screen current is likely to reach $40-50 \mathrm{~mA}$, so an average loading on VS3 of $2 \times 25 \mathrm{~mA}$ plus PI and input stages would have a worst-case level of about 10 mA , with a 5 V drop on the choke. Screen resistor drop is insignificant, unless increased to 1 k or more.

Tung-sol curves for screen $\mathrm{E}_{\mathrm{C} 2}=360 \mathrm{~V}$ and $250 \mathrm{~V}, 12 \mathrm{~K} \mathrm{P-P} \mathrm{(3K} \mathrm{line)} \mathrm{and} \mathrm{640V} \mathrm{sagged} \mathrm{VS1}$ indicates a peak plate current of 220 mA and nominal clean output power of: $(\operatorname{Ipk})^{2} \times \mathrm{Rpp} / 8=$ $(0.22)^{2} \times 12 \mathrm{k} / 8=73 \mathrm{~W}$. For this $\mathrm{Vg}=0$ signal condition, the rms OPT current draw is likely about $140 \mathrm{~mA}(64 \%$ of peak), and the average VS1 power consumed is about $700 \mathrm{~V} \times 0.14 \mathrm{Arms}=98 \mathrm{~W}$, and the OPT loss is about $(0.14)^{2} \times 60 \Omega=1 \mathrm{~W}$, so the tube plates dissipate $98-73 \mathrm{~W}-1 \mathrm{~W}=24 \mathrm{~W}$, or about 12 W each, which is well under max design level.

Bias voltage set for nominal $21 \mathrm{~mA}=15 \mathrm{~W} / 700 \mathrm{~V}$. Turn pots clockwise to increase current.

5. Power Supplies

Two 8-pin Octal bases are available for the half-wave voltage doubler rectifier circuit which uses the 335 V secondary HT winding and two isolated 5 V 3 A heater windings. An additional 56 V winding is used for the fixed bias power supply, which originally used twin diodes from a 9-pin base valve (possibly a ?), but is modified to use silicon diodes and a low ripple design.

The $5 \mathrm{U} 4 \mathrm{~GB} / 5 \mathrm{AS} 4$ has limits on the effective source resistance when feeding a capacitor-input filter. The effective source resistance is comprised of the reflected power transformer primary resistance $=3 \Omega \times(330 / 240)^{2}=6 \Omega$; plus the secondary resistance $=15 \Omega$; which sums to 21Ω. The Sylvania datasheet from Sept 1958 indicates the effective source resistance should be $30-35 \Omega$ for a secondary supply of $330-335 \mathrm{Vrms}$, based on each plate experiencing a peak current of 4.6 A into a capacitor-input filter. With no measurements of peak current to indicate otherwise, an additional series resistor of $10-15 \Omega$ would be needed. The datasheet also requires the sum of plate currents to be less than about 240 mA for $\mathrm{Vdc} / \mathrm{Vac} \sim 0.8=270 \mathrm{~V} / 330 \mathrm{~V}$, however this may also not be applicable for this half-wave, doubler config. With both plates in parallel, the voltage drop across the conducting diode should be about 44 V for a total average current of 450 mA , but would be substantially more during the initial peak current charging portion of diode conduction in which total current could exceed an amp. CRO waveform of diode current showed a peak current of about 1 A with no added external resistance, and almost a sinusoid waveform, when working into 12 uF poly caps with 85 W load on V1 and 8 W load on V3-however, the condition of the diodes was not known. Decided to initially use no additional series resistance.

A 1 A fuse is appropriate to include. The standby switch is bypassed by a 270 K 2 W to provide some bleed charging of caps whilst heaters start.

Ripple voltage at idle is 3.7 Vrms on VS1, 4.5 V on VS2, $\sim 80 \mathrm{mV}$ on VS3. The ripple voltage on VS2 is mainly 50 Hz , at a measured level of 67 Vrms with a load current through the choke of 27 mADC and a ripple on VS3 of 2.5 Vrms . C3 impedance is 265 R . Ripple attenuation is $2.5 / 67=$ 0.037. Choke impedance is $\mathrm{X}+470 \mathrm{R}=265 / .037=7160$. Hence choke inductance is nominally (7160-470) / $2 \pi 50=21 \mathrm{H}$ at 30 mA . [Measure choke]

A silicon diode isolator is used after the choke to feed a buffer 470 uF 400 V capacitor for the input stages. The operating current of the PI and input stages is less than $10 \mathrm{~mA}(2-3 \mathrm{~mA}$ for $12 \mathrm{AX7}$, and $5-7 \mathrm{~mA}$ for PI). A 1 k 5 series resistor plus 490R choke resistance limits peak current capacitor charging current to about $400 / 2 \mathrm{k}=200 \mathrm{~mA}$ (80 Wpk). Three series zeners (2 x 1 N 5383150 V , 1 N5373 68V) limit VS4 at idle to 375 V (to keep below 400 V cap rating), with max current (no valves) of about ($400-375$) $/ 1 \mathrm{k} 5=17 \mathrm{~mA}$ and zener dissipation of 6 W .

A normally reverse biased diode from the large cap on VS3 back to VS1 helps discharge VS3 after power turns off.

Supply rails fall to 60 VDC in 45 secs after turn-off with 120 K bleed on VS1.

5.1 Bias Supply

The bias supply uses a soft bridge rectifier feeding a large buffer capacitor, then a zener regulated 54 V then a RC feeding a pots to provide closely bypassed independent rails for each 6CA7 grid. The protection relay is connected across the zener.

6. Protection

6.1 Loss of grid bias

If the grid bias supply voltage fails, then the grid will rise and become positive to cathode, and plate current will increase without control and the tubes fail. A 48VDC relay, Omron G2R-2 48V, has a coil resistance of 4.2 K , and requires about 30 V to operate and 8 mA . A 2 K 7 series resistor from the zener regulated 54 V rail operates the relay at about 33 V . The zener operates with about 3 mA , the relay takes about 8 mA , and the bias circuit about 4 mA . The relay de-energises due to gross failure of the bias power supply (about 20 V on coil). The relay contacts are used to disconnect the secondary HT.

6.2 HV breakdown

If the $\mathrm{B}+$ rail shorts to ground, due to a flashover, or insulation breakdown, then a 1 A fuse in the transformer secondary line provides gross failure protection by de-energising both the plate and screen rails.

6.3 Output open circuit

Three series connected 330V MOVs in series with 4 k 7 placed from each anode to VS1 provide overvoltage protection or each anode - dampening from about 1.1 kV .

12AX7 V3a
HI GAIN VOL

Builtrowithsend..

OFERLCMDS...

Ropustly bullt with smple saiely morgine thus oerminting everloads for shor't periods -Ifhoui permanent damagn to posistor.

GAMPNESS...

even falt water Immeratom mahss no differgitcz to depend. Fower W. W, Reslansis. for
 have been dureimped to iest have eorraslua thacts of even belling sall water,

 sagelal TRC Codilna aives bimas' Dratectisn and infures relisble pariormance in condifioni ot Intentes hear. With easistors the coatisg is prac. Heally finumbla.
 WTHEASE NEAT...

IRC onginaert have new brought these resistory la n high itala at parfaction and sdaptability for practically every powar-cesistar requirement. IRC Power Wira Wound Resistors ate unexcallad for long, frcubletren eserfermance even under the most execting canditions. Write or phane for full dataile.

(102) Powect Whichoomed Resistons

Sole Agerts for Ausirglia:

Wm. J. McLELLAN \& Co. Pty. Lid.
 H2\& SUSSEX STREET, SYDNEY V SXII 1

 t50 Yordi from. King St.a towdrds Eastine St.
All ways a SOUND INVESTMENT!

AMPLIFIERS...

Philips' Compiehamive range of raifable Amplifiers inclucas:-
Itam Napt AC Record Mayar $"$ " 957 IJWatt 240 Y AE
" 974.959 is Wett $240 \mathrm{~V}, \mathrm{C} / 6 \mathrm{~V}$ orl2V DC
30 Watt AC
" " $961 \quad 30$ Watt AC
(All suitablo for High fidolity musicai appraciation)

TUNER AMPLIFIERS...

Tha illustratign at lef ore of the Trpe Dol4, which is an RF Tamer complete wilh i] Wril AC Ampirlime Aigkly seitibl for Hiah fidiolidy and da I.A. Ior Hoteds. Hosplang etc. adact Mourling lypa Tuners also avarlable. Qutatanding itaturte of phitipt Amplipiers and lufter Mandifiens inclede:

- 1 ito Voll materning system for oulput.
- Low Indormal cosiglothen.

Eroquit for laflat axplainimg how these Ampllters ar abselulaly looprod in operalion. Adse. anarl lrom having ferlustve sappta ieatures incniporaled. they emplay a syan of impedance motching which is simpilg in the oxlisme.
Abse licluded in Philips ramce: Microphoney. Stands, 5penkes
anciosuras. anclosures

